BACHELOR THESIS

Course Code: MMT3500 Name: Tor-Anders Ulven

The Interrelation between the
Environment, the Artificial
Intelligence and the Player in
A Moron’s Quest

Date: 27.05.16 Total number of pages: 69

NORD

University www.nord.no

SAMTYKKE TIL BRUK AV PROSJEKT, KANDIDAT-, BACHELOR- OG MASTEROPPGAVER

Forfatter(e):
Tor-Anders Ulven

Norsk tittel:

Forholdet mellom Milje, Kunstig Intelligens, og Spilleren, i A Moronds Quest

Engelsk tittel:

The Interrelation between Environment, Artificial Intelligence, and the Player, in A Moronfs Quest

Studieprogram:

Spill og Opplevelsesteknologi

Emnekode og navn:

MMT?3500 - Bachelorproduksjon

x Jeg samtykker i at oppgaven kan publiseres pa internett i fulltekst i Brage, Nords' &pne arkiv

Var/min oppgave inneholder taushetsbelagte opplysninger og ma derfor ikke gjores tilgjengelig for andre

Kan frigis fra:

Dato: 27.05.16

/E;f-{:frabas Uhey

underskrift underskrift

underskrift underskrift

Abstract

I have chosen to base the Bachelor Thesis around the symbiotic relationship between
Environment, Artificial Intelligence and the Player, in the game project A Moronds Quest, in
which I worked as a Lead Programmer, with main responsibilities in Game Mechanics,

Artificial Intelligence and Player Control.

In the written part of this project I will attempt to explain the different reasons behind every
choice made in the affected areas of the game, as well as the logic behind, and execution of,

different programming techniques and algorithms.

It is also my intention to avoid the jargon becoming too technical; I wish to keep the written
description understandable, even for readers who are not too familiar with programming,

although some prior knowledge might be needed.

There is little doubt that many of the theories and executions discussed in this document are
far from perfect; this was a real learning experience for me, and I believe that the topics
discussed in this thesis can serve as both warnings and good practices for fledgling

programmers looking for advice.

Table of content

1 Introduction
2 The Game - A Moron’s Quest
3 Iterations of Design and Mechanics
4 The Environmentgt
4.1 The Tiles
4.2 The Random Dungeon Generation
4.2.1 The First Version
4.2.2 The Second Version
4.2.3 The Final Version
4.3 Structure of the Random Dungeon Generation Algorithm
4.3.1 The Modules
4.3.2 The Placement of Modules
4.3.3 The Placement of Objects
4.3.4 Tile to Exit Mapping
5 The Artifical Intelligence
5.1 Properties of Life
5.1.1 Breakdown of Properties
5.1.2 Breakdown of Functions
5.1.3 The Static Enemy
5.2 The Pathfinding Algorithm
5.2.1 The First Iterations
5.2.2 The Final Version
5.3 The Combined Result

5.3.1 The Adventurer

11

12

16

17

21

24

27

27

29

30

34

36

36

37

40

45

46

46

50

51

51

5.3.2 The Enemy
6 The Player
6.1 The Spells
6.1.1 The Glow Spell
6.1.2 The Identify Spell
6.1.3 The Sound Spell
6.1.4 The Influence Spell
6.1.5 The Hide Spell
6.1.6 The Discovery Spell
6.1.7 The Teleport Spell
6.1.8 The Confusion Spell
6.1.9 The Sleep Spell
7 Conclusion and discussion
7.1 Conclusion

7.2 Discussion

52

53

54

55

55

55

56

56

56

56

57

57

57

58

58

60

I Introduction

When I first started programming some 16 years ago, primarily dabbling in Multi-User
Dungeons (MUDs), writing in the now more or less extinct programming language of LPC
(Lars Pensjo C), I quickly fell in love with the idea of combining objects of different
properties together to form a singular symbiotic entity of sorts. In the World of MUDs this
often translated into combining for instance a Room Object with the code of a Monster

Object, so they’d stay somehow connected for the player to investigate and interact with.

For me, the essence of a game up until that point wasn’t compartmentalized into different
structures or categories; it was just a game, a single entity. But now that I (almost) understood
what could be found under the hood of this mythical and enigmatic conglomeration of 1’s
and 0’s, a whole new world of possibilities revealed itself to me. And behold, I was reborn a

Game Mechanic-centric Programmer.

Fast forward 16 years (and numerous projects) later, this world of possibilities is still around,
only slightly more understandable and moderately kept in check by cynicism and a healthy
dose of realism. One fall evening of 2015 I sat down by my trusted computer (now dead and
buried; turns out it couldn’t be trusted at all), ready to accurately depict exactly what the
following semesters bachelor assignment should encompass. Something involving Artificial
Intelligence. Some mechanic where the Player and the Artificial Intelligence is somehow
connected. Something about the Environment in all of this. But nothing really panned out. It
all turned out rather vague. Even the project description I handed in, where four of us initially
teamed up to form a game project synopsis, felt unsatisfying and bleak compared to what I
had envisioned those 16 years ago, when everything was new and nothing (felt like it) had

been done before.

But then, some months later, January 2016, our Developer Team sat down to prepare game
pitches for another subject. And this idea formed. A game where the protagonist was a total
moron, and somehow his moronic actions saved him from complete obliteration as he was

delving deep into a dark dungeon.

The pitch was initially scrapped by the Lords Above, as it turned out it lacked a proper
description on how exactly the game would play, and rightly so. But from the ashes of this
failed pitch rose A Moronds Quest, a game where you’re not the protagonist; you are the evil
wizard, trapped deep in a dungeon, all but powerless save for a handful of cheap magic tricks.
An Adventurer, a total moron, enters the dungeon, and it is you, the player, the evil wizard,
who has to guide this utter idiot through traps and lethal dangers, ultimately leading him to

your prison, hoping he’ll set you free at long last.

It didn’t dawn on me right away, but this premise held all the elements I was looking for in
my final project; the possibility to combine the Environment, the Artificial Intelligence and
the Player, into a symbiotic and ever changing relationship. But when my feeble mind

fathomed the opportunity, it was chiselled in stone (figuratively speaking of course, [am a

horrible craftsman); this was now to be my project.

And so, here we are, at the end of the semester, ready to hand in the grand old thing. Is it
perfect? Goodness no. Is it functional? Hell yes. Did I learn anything? Undoubtedly so. Was

it all worth it? Well, I’1l leave that final question hanging for the reader to decide.

Acknowledgements:
While this project is more or less void of any direct research, there are a few individuals I'd
like to thank for just being there, and also for teaching me a couple of valuable lessons along

the way.

Trond Olav Skevik, Nord University.
Knut Ekker, Nord University.

I guess that’s it. While a short list, I’ve no doubt they all (both) were crucial in helping me

through the semester(s).

2 The Game - A Moron’s Quest

A Moronds Quest is partly a Dungeon Crawler, partly a Rogue-like, partly an Action RPG,
partly a Strategy Game and wholly its own entity. While traditionally the player in these
games would be the protagonist of the story, these roles are reversed in A Morongs Quest.
You play the evil wizard, trapped for millennias down in the deep dank depths of a dark
dungeon, now but a conjurer of cheap tricks. But, behold; an Adventurer enters the dungeon!

This is your chance. You can finally break free!

Figure 1: Are you ready for the Moronds Quest?

In A Moronbs Quest you cannot directly control the Adventurer. You can influence his
actions, by casting spells affecting the Environment, sometimes even the Artificial
Intelligence, but you cannot guide his/her/its every action. You have to choose when to
influence, and when to let him/her/it be. When to micro-manage, when to focus on the bigger

picture. And this constant back-and-forth trading of information and the intricate ways of

connection between the Player, the Environment, and the different variations of Artificial

Intelligence, is what ultimately makes the game special, and in many aspects, quite unique.

The game itself is a full 2D sprite-based experience, visually presented through a sort of 2,5D
illusion by the use of square tiles as building blocks for the levels. The Artificial Intelligence
manouvers through this scenery by moving from one square tile to another. The Player
interacts with the Environment by casting spells, usually (but not exclusively) directed at one

or more tile objects.

In order to beat a level, you must guide the Adventurer towards destroying all crystal
constructs found in that particular level. These crystals contain your stolen magical essence,
and once freed, will allow you to re-discover and learn forgotten spells to further aid you in

your (moron’s) quest.

o

b
s
DOOOL

Dunceon Level: 1 CrysTaLs IN LeveL: 1 =6;!;!) (] - Lire: 20/20

Figure 2: An early level of A Moronds Quest.

The goal of the game is quite simple; help the Adventurer survive long enough for him/her/it
to reach the bottom level, in the process freeing you, the evil wizard / player. To do so you

must aid him/her/it through traps, through combat, and through utter moronic actions.

3 Iterations of Design and Mechanics

During the course of the development of A Moronds Quest, there have been several times
where the team decided to take new directions, leading to a number of changes in both design
and mechanics. These changes could often be minor, but every little detail had the potential
to force rather complex design iterations in the Environment, Artificial Intelligence and

Player Control as a result.

The way A Morongs Quest was planned has significant impact on the way it was built. Simply

put, it went through 3 major design decicions before landing on the final one:

a) A classic Top Down 2D Dungeon Crawler. The first iteration was more or less a standard
Dungeon Crawler, where you moved from tile to tile by utilizing the arrow keys. Combat and
Al here was limited to simple back and forth stat comparisons once the player was close

enough and engaged in combat to an enemy.

b) A classic Top Down 2D Dungeon Crawler, with “JRPG” Combat Encounters. Here the
team took the same Dungeon Crawling elements from the first iterations, but changed the
combat so that it had a seperate combat screen for encounters. The idea here was that the
decicions available should in some way be influenced by the players stats, and, most

prominently, his/her/its lack of intelligence.

¢) A Top Down 2D Dungeon Crawler, where the Main Character has no direct control of the
environment. This was the turning point in the project. Before this, the player had total
control of the Adventurers movement in the scene. Now, the player could only influence the

scene by using spells, making the need for more sophisticated Al necessary for the first time.

Each of these planned design choices played a part in the direction of the Environment vs.
Artificial Intelligence vs. Player Control. Most important was the decicion to base the game
control around tiles rather than world points. This meant that the world information could not

simply be handled by the Al object itself; it had to share this information with the current tile

it resided on (Environment). This again lead to the development of three different Al entities;
The Environment, The Adventurer and the Enemy Al. The interconnectedness of these in
combination with the general game mechanics, primarily Player controlled, will thus be the

foundation of this Bachelor Thesis.

To properly analyze the iterations and learn from them, it is generally better, and more
understandable to the reader, to divide them into their own categories, and go through the
thought process behind each decision taken. By doing this, it should become more apparent

what has gone right, and what should have been done better.

In the particular case of this bachelor thesis, there are understandably three main categories

worth investigating; The Environment, The Artificial Intelligence and the Player Control.

10

4 The Environment

In A Moron’s Quest, the Environment plays an important part in the way the Artificial

Intelligence behaves, both in terms of content and functionality.

Already from the very early stages of planning, it was decided by the team to base the level
design of the game around the principles of tiles, heavily inspired by other Rogue-like
Dungeon Crawlers (Crawl Stone Soup, Dungeons of Dredmor). The original prototype more
or less mimiced the elements of Crawl Stone Soup, with a top-down view on a flat, 2D
environment. The character in this setting was controlled directly by the player, moving
instantly from tile to tile, without any delay in the actual action. The idea at this point was to
pre-build the levels tile by tile, and let each singular tile handle the needed variables, as for

instance if there was an object or an enemy present on it.

(o L e L [L o [e | [L L [s U L (=1 1 1 |

e et
e e
[| |] §
1 | a1 T
e land & w mew ey el ey
[| g [] r‘n ﬁr‘l ‘hn |
[L T
e e
[| r [] |
— —
Elanls T
(3] i (3] [|

/i 1 |

il - anl

1 |

e et
| | r‘ [] F
M/ /M
e el
| | B (1] lh
e e

HO R T

Figure 3: The very first Prototype, a flat 2D environment.

Whenever something moved, be it Player, Enemy or Object, updating the tiles was an easy
task. This was done simply by removing the desired variables from Tile A and adding it to
Tile B. For the most part this solution functioned fluently without any major issues. But as
soon as moving Al enemies were introduced to the environment, it became apparent that this

solution alone would not be stable in the long run.

11

The problem was a game breaking one; when two moving elements in close proximity to one
another chose the same tile as their next destination, the tile in question would always mark
the last entry as true, and overwrite the first one. This caused the first entry to freeze; it no
longer had somewhere to exist, and could thusly not proceed to execute commands. So in the
game itself it would appear that the first entry just stood there. And since it no longer existed,
i.e. had no bonds to any of the tiles, it could not be found or changed by other entities in the
scene. To solve this, the tiles alone could not hold all the information; the mechanics had to
be structured to support a symbiotic relationship between the Environment and Al Objects.
With this in mind, the tiles could now be formed to have a clearly defined information
gathering system. They would simply keep track of what was currently on them, and the Al

would update this as needed.

At this point in the project there became a need to decide the exact information the tiles
should gather and hold. To avoid too many re-iterations in the future, the team decided on

most of the main mechanics, and work began to implement support for it in later builds.

4.1 The Tiles

At the start of each level, the first order of business for each tile object is to find all
neighboring tiles, and store them in a list. By doing this, it is fairly easy (and cost effective)
to request information from surrounding tiles later in the game whenever it is needed. At this
point, the Random Dungeon Generator (see later Chapters) has already placed objects,
enemies, traps, exits etcetera on (more or less) randomly chosen tiles, and fed them the
needed information. It was crucial that every tile received this information, or there would be

visible objects in the scene that could not be interacted with.

12

Figure 4: A standard dungeon overview in a Moronds Quest

By taking a closer look at this figure (taken from a very early dungeon in the game), we can
see six distinct objects, all of whom share information with their current tile. Most of these
are stored the same way, but the information shared will be processed and interpreted

differently based on a) what it is, and b) what object interacts with it.

Let’s dissect the figure further and identify what each of the six visible objects mean for the

tiles containing them, and what information is held and shared.

Figure 5: An Enemy NPC guarding an Exit Tile.

13

The Enemy has its object referance saved in the current tile it resides. This means that the tile
in question can access every component attached to the object quite easily, and vice versa.
When an Enemy Al resides in a tile, it is impossible for the Adventurer Object to occupy that
tile. The same is true reversed. It is however possible for two Enemy Objects to occupy the
same tile. This is needed since Moving Al often will cross tiles occupied by a Static Al
When this happens we store the Static Al in a temporary variable, and move the Moving Al
to be the newest Enemy Object in said tile. When the Moving Al wanders off to a

neighboring tile, we move the Static Al back to be the primary Enemy Object in that tile.

The Exit Tile will, upon starting the level, change its texture to the one seen above. When the

Adventurer Object arrives at the Exit Tile, and it is open, a new level will be loaded.

Figure 6: The Adventurer.

The Adventurer Object resembles the Enemy Object in regards to what information needs to
be shared. The Tile in which it currently resides will store the object referance, which then

can be accessed easily by the tile, neighboring tiles, and objects stored in neighboring tiles.

14

Figure 7: A pair of boots (Item).

Items will have their object referance stored by the tile in it which they reside, and can only
be interacted with by the Adventurer Object, which will actively seek out unidentified items
in a given path. Once the Adventurer reaches the tile, and the needed requirements are met,
the item object is moved to the Adventurer Object, and removed from the tile. Unlike a tile
populated by an Enemy or Adventurer Object, a tile with an item can be freely moved to and

from by any Al Object, even if the requirements for picking it up are not met.

Figure 8: A Crystal Construct and a potion (Item).

Crystal Constructs will have their object referance stored like the other objects, and can only
be interacted with by the Adventurer Object. Unlike items, however, the Adventurer will
interact with it through neighboring tiles, and not the tile in which it resides, much like the
manner in which Enemy Al and Adventurer Al interact. Once the Adventurer interacts with

the Crystal, it is marked as “destroyed”, and the texture is subsequently replaced with one

15

that appears broken. The tile is then updated with this information, so that the object can no

longer be accessed, while technically still being there.

What should be clear by now, is that most of the objects tied to a certain tile will have their
object referance stored for easy access. This procedure is, for the most part, all done before
the level loads, and will thusly cause little to no delay when the actual interactions happen. It

is an easy and effective way of communicating information and accessing object referances.

4.2 The Random Dungeon Generation

Now that there’s a little more in depth knowledge about what each tile does, it is time to take
a closer look into how each level is generated, so that we can approach the subject of the
Artificial Intelligence and how it relates to the aspects of the game that’s been covered thus
far. To understand how the dungeon generation is designed, it might serve well to consider
previous iterations, in that way showing how it ended up with the current version, and more

importantly; why.

As mentioned previously, the original design did not include randomly generated levels. It
was only after the third and final iterations of the game that it became necessary to expand on
the design, as the team concluded that it would take too much time to manually build levels
while also producing enough content to fill them. A random dungeon generator thus became
the solution, allowing the team to focus on the production of content for the levels, rather

than building the levels themselves.

While debating exactly how the generator should be designed, the programming team came

up with four possible versions to consider;

a) A tile-by-tile generator. This generator would build the level one tile at a time based

on parameters passed through a level generation algorithm.

16

b) An ASCII-map converter. This generator would interpret ASCII-symbols from a text
document, and build a module of the map based on those parameters. A second
algorithm would piece modules together to form a complete level.

c) Module placement (1). A generator that would place pre-built moduless randomly
about, then connect them with paths in between.

d) Module placement (2). This generator, like c), would place pre-built modules, but
instead of placing them at random Vectors, would connect them directly upon
placement. I.e. it would place a module directly next to one of the previously

generated modules and so forth.

4.2.1 The First Version

It was quickly decided that option a) was not a viable one. It would take too much time to
design and build that kind of algorithm. The remaining three, however, all had potential.
After some initial deliberation, the team decided to go ahead and give option b) a go, since it
seemed, in theory, that this particular solution would be the most time efficient one. It also
had the added benefit of not requiring level builders to access the game engine directly. They
could simply produce modules by editing text documents, of which they could share with the

production team.

The task of programming the first version of the algorithm took about two days, and by the
third, there was a functioning prototype ready to be tested and expanded upon. It quickly
became apparent that there were some serious issues that quite abruptly put a stop to any
further development of the algorithm, however. Let’s take a closer look at exactly what these

issues were.

17

FEFFFFEFFTEFEFFEEEET,

FEFFFFFFFFFFFFFFEeee,

FEFFFFFFFFTFFFFTrres,
FEFFFFFFFFFFFFFFEee,

FEFFFFFFFFFFFFFFFFFT,

FEFFFFFEFFFFFFFFreee,

FEFFFFFFFFFFFFFFFFFT,

FEFFFFFEFFFFFFFFreee,

FEFFFFFFFFFFFFFFFFEE,
FEFFFFFFFFFFFFFFfree,

FEFFFFFFFFFFFFFFFFEE,
FEFFFFFFFFFFFFFFfree,

-[FEFFFFFFFFFFFffff]-,
ol FIFFFFFFFFFffffff|o,
o! FEFFFFFFFFFFFffff|o,
o! fFIFFFFFFFFFFFffff|o,

o* FIFFFFFFFfffffff+a,

Figure 9: Three examples of modules / maps made in a text document and imported to the engine.

The pictures above represent the ASCII-maps imported to the game engine. The algorithm
would then break down the maps line by line, and then symbol by symbol, interpret these

symbols, then place one tile at a time, until the module was completed.

Figure 10: A level generated by several randomly chosen ASCII-maps put together by the algorithm.

While technically working as planned, the problem with this solution was found in what the
team believed to be its virtue; the ASCII-maps. Because of the somewhat complex designs of
the levels (seperate tiles for floor, walls, roof, special tiles for the roof based on the angle and
count of surrounding roof-tiles, roof-tiles overlapping floor tiles etc), the number of symbols
needed for the algorithm to instantiate the correct tile with the correct texture quickly became

quite sizable and complex.

19

v P
FEFFFFEFFFFFFFFFEeee,
FEFFFFEFFFFFFFFFfeee,

AP L
WiNiAY

FEFFFFEFFFFFFFFFfeee,
FEFFFFEFFFFFFFFFfeee,

Even a small module, such as the example shown above, could contain as many as 10+
distinct symbols, signifying some special tile or other. Make one mistake, and the level would
load with strange and unpredictable results. The debugging process also turned out to be quite
slow. One had to load in modules based on the ASCII-map, look them over for mistakes,
reimport the ASCII-text file once changed, and repeat the process until satisfied. Now
imagine doing this some 30+ times for each seperate module. The teams Level Designer
attempted to create a few modules based on the algorithm, but gave up early on because of
the sheer amount of rather abstract detailing required. It just turned out to be too much of a

hassle to be worth it, and any further work was immediately suspended.

These finding were reported to the rest of the team, and the very next day work began on a

new generator solution, Option c) this time (Module placement (1)).

20

4.2.2 The Second Version

This particular algorithm was based on several smaller modules, pre-built in the engine
before generation. The generator would then instantiate these modules, place them a certain
minimum distance away from eachother, and then generate a path between each module, so
that they would in some way be connected to the rest of the level. The best part of this
solution, was the ability to be able to build modules at any size and shape. The algorithm
would never place two modules close enough for this to become a problem., thus presenting
the possiblity of some quite unique levels being generated. But as work on the algorithm got

past the first few testing stages, some problems began to arise.

Figure 11: A number of randomly placed modules generated by the algorithm, unconnected thus far.

In order to generate paths between different modules, one either had to delete walls, or
intentionally leave open parts in the design. The last option seemed the easiest, as deleting

walls accurately in runtime was somewhat costly, at least for the larger levels. It would also,

21

in theory, make it easier for the path-generator algorithm to sort through which modules

needed exits, and which were already connected.

Figure 12: The very same modules after path generation, now (almost) connected to eachother.

While the path-generator functioned fine, as seen on the figure above, one can immediately
spot a couple of issues. For one, not all of the modules are connected to eachother. This was a
problem it was fairly easy to solve, however; if one or more modules are left out of the bigger
picture, simply delete them. There’d still be enough modules connected to generate a big
enough level. The real issue was the generation of walls and roof. Because of the nature of
the visual design, walls and roof had to be generated after the path. Especially the roof
became somewhat of a headache, since the texture of each roof tile relies heavily on the

texture of roof tiles, or lack thereof, placed around it.

22

